英伟达新 nGPT 架构撬动 AI 未来:超球面学习提效,训练模型时间可缩短至 1/20
最新 10 月 22 日消息,科技媒体 dataconomy 昨日(10 月 21 日)发布博文,报道称英伟达在训练 AI 模型方面取得重大突破,发布了最新的 Normalized Transformer(nGPT)新架构,保持模型的稳定性和准确性的前提下,可以将训练 AI 时间缩短至 1/4 或者 1/20。
nGPT 架构提升效率的秘诀在于“超球面学习”(Hyperspherical learning)这个概念。
传统的变换器模型通常缺乏一致的几何框架,而 nGPT 通过将嵌入、注意力矩阵和隐藏状态等关键组件映射到超球面表面,确保模型各层在训练过程中保持平衡。
这种几何结构有助于创造更稳定高效的学习过程:
减少训练步骤:nGPT 不再直接对模型权重应用权重衰减,而是依赖学习到的缩放参数,优化模型在训练中的调整方式。
简化过程:此方法消除了对 LayerNorm 或 RMSNorm 等归一化技术的需求,使训练过程更为简单和快速。
英伟达团队使用 OpenWebText 数据集进行测试,nGPT 在速度和效率上均优于传统的 GPT 模型。对于长达 4000 个 tokens 的文本输入,nGPT 所需的训练轮次远少于传统模型,显著缩短了训练时间。
nGPT 的一个关键优势是将归一化(normalization)和表示学习(representation learning)结合成一个统一框架,这种设计简化了模型架构,便于扩展和适应更复杂的混合系统。未来,nGPT 的方法可能被整合进其他类型的模型和架构,从而开发出更强大的 AI 系统。
最新附上参考地址
nGPT: Normalized Transformer with Representation Learning on the Hypersphere
相关文章
- 2024 胡润中国人工智能企业 50 强公布:寒武纪 2380 亿
- 阿里通义万相 2.1 模型宣布升级:首次实现中文文字视频
- 开源媒体播放器 VLC 下载破 60 亿次,预览本地 AI 字幕
- 英伟达迷你超算遭友商嘲讽:宣传 FP4 算力,实际“不如买
- 银河通用发布全球首个端到端具身抓取基础大模型 Grasp
- 雷蛇推出“AI 游戏伴侣”Project AVA:支持实时指导 +
- 京东方 CES 2025 发布行业首款 65 英寸 4K 超高清“AI
- 微软开源 140 亿参数小语言 AI 模型 Phi-4,性能比肩 GP
- 微软承认必应 AI 图像生成器 PR16“开倒车”,现回滚至
- 西藏地震期间“小孩被埋”等 AI 图大量传播,严重可追责