中国科学院利用人工智能,发现迄今为止距其主星最近的最小行星
最新 10 月 14 日消息,由中国科学院上海天文台葛健教授带领的国际团队,研发了一种结合 GPU 相位折叠和卷积神经网络的深度学习算法,并在开普勒(Kepler)2017 年释放的恒星测光数据中发现了五颗直径小于地球、轨道周期短于 1 天的超短周期行星。
其中四颗是迄今为止发现的距其主星最近的最小行星,类似火星大小。这是天文学家首次利用人工智能一次性完成搜寻疑似信号和识别真信号的任务。相关研究成果发表在《皇家天文学会月报》(MNRAS)上。
最新附论文链接:https://academic.oup.com/mnras/article/534/3/1913/7762975
据介绍,经过 5 年的努力和创新,科研团队开发了结合 GPU 相位折叠和卷积神经网络的深度学习的新算法 GPFC。该算法比国际上流行的 BLS 法搜寻速度提高了约 15 倍,检测准确度和完备度各提高约 7%,提高了凌星信号搜索速度、精度和完备度。
该算法已应用于 Kepler 的数据集中,并识别出五颗新的超短周期行星 ——Kepler-158d、Kepler-963c、Kepler-879c、Kepler-1489c 和 Kepler-2003b。
其中,Kepler-879c、Kepler-158d、Kepler-1489c 和 Kepler-963c 分别位列迄今为止发现的最小超短周期行星中的第一、第二、第三和第五名。
Kepler-879c、Kepler-158d、Kepler-1489c 和 Kepler-2003b 是最接近其主星的小型行星,其轨道半径在 5 个恒星半径以内,展现了新算法在搜寻微弱凌星信号的优势。
这些超短周期行星的存在为行星系统的早期演化、行星-行星相互作用以及恒星-行星相互作用的动力学(包括潮汐力和大气侵蚀)研究提供了关键线索,对行星形成理论研究具有重要意义。
这一成果为在高精度光度观测数据中快速而高效搜寻凌星信号提供了新的研究方式,显现了人工智能在天文海量数据中探寻微弱信号的应用潜力和前景。
相关文章
- 2024 胡润中国人工智能企业 50 强公布:寒武纪 2380 亿
- 阿里通义万相 2.1 模型宣布升级:首次实现中文文字视频
- 开源媒体播放器 VLC 下载破 60 亿次,预览本地 AI 字幕
- 英伟达迷你超算遭友商嘲讽:宣传 FP4 算力,实际“不如买
- 银河通用发布全球首个端到端具身抓取基础大模型 Grasp
- 雷蛇推出“AI 游戏伴侣”Project AVA:支持实时指导 +
- 京东方 CES 2025 发布行业首款 65 英寸 4K 超高清“AI
- 微软开源 140 亿参数小语言 AI 模型 Phi-4,性能比肩 GP
- 微软承认必应 AI 图像生成器 PR16“开倒车”,现回滚至
- 西藏地震期间“小孩被埋”等 AI 图大量传播,严重可追责