苹果研究人员质疑 AI 的推理能力:简单数学问题稍作改动就会答错
最新 10 月 12 日消息,近年来,人工智能(AI)在各个领域取得了显著的进展,其中大型语言模型(LLM)能够生成人类水平的文本,甚至在某些任务上超越人类的表现。然而,研究人员对 LLM 的推理能力提出了质疑,他们发现这些模型在解决简单的数学问题时,只要稍加改动,就会犯错误,这表明它们可能并不具备真正的逻辑推理能力。
周四,苹果公司的一组研究人员发布了一篇名为《理解大型语言模型中数学推理的局限性》的论文,揭示 LLM 在解决数学问题时容易受到干扰。最新注意到,研究人员通过对数学问题的微小改动,例如添加无关的信息,来测试 LLM 的推理能力。结果发现,这些模型在面对这样的变化时,其表现急剧下降。
例如,当研究人员给出一个简单的数学问题:“奥利弗星期五摘了 44 个奇异果,星期六摘了 58 个奇异果。星期日,他摘的奇异果是星期五的两倍。奥利弗一共摘了多少个奇异果?”时,LLM 能够正确地计算出答案。然而,当研究人员添加一个无关的细节,“星期日,他摘的奇异果是星期五的两倍,其中 5 个比平均小”时,LLM 的回答却出现了错误。例如,GPT-o1-mini 的回答是:“... 星期日,其中 5 个奇异果比平均小。我们需要从星期日的总数中减去它们:88(星期日的奇异果) - 5(较小的奇异果) = 83 个奇异果。”
上面只是一个简单的例子,研究人员修改了数百个问题,几乎所有问题都导致模型的回答成功率大幅下降。
研究人员认为,这种现象表明 LLM 并没有真正理解数学问题,而是仅仅根据训练数据中的模式进行预测。但一旦需要真正的“推理”,例如是否计算小的奇异果,它们就会产生奇怪的、不合常理的结果。
这一发现对 AI 的发展具有重要的启示。虽然 LLM 在许多领域表现出色,但其推理能力仍然存在局限性。未来,研究人员需要进一步探索如何提高 LLM 的推理能力,使其能够更好地理解和解决复杂的问题。
相关文章
- DrunkSense 突破性 AI 车载酒后驾驶监测技术登场:准确
- 亚马逊 AI 版图新变数,15 年老将 Matt Wood 官宣离职
- 消息称字节跳动马来西亚裁员超 700 人:内容审核转向 AI
- 月之暗面发布 Kimi 探索版:搜索量相比普通版增强 10 倍
- 微软助推医疗行业 AI 变革:新增智能体服务、扩充 Azure
- 月之暗面回应“Kimi 崩了”:目前已经恢复,Kimi 探索版今
- 快手联合推出 Pyramid Flow 开源文生视频 AI 模型:最高
- 苹果研究人员质疑 AI 的推理能力:简单数学问题稍作改动
- Counterpoint:2024Q2 AI 服务器全球市场占比达 29%
- 上海交大联合开发 AI 系统,首次实现孕前精准预测流产风